Endurance and Scaling Trends of Novel Access-Devices for Multi-Layer Crosspoint-Memory based on Mixed-Ionic-Electronic-Conduction (MIEC) Materials

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (IBM T. J. Watson Research Center, Yorktown Heights, NY 10598)
Tel: (408) 927–2362, –3721, Fax: (408) 927–2100, E-mail: {rsstenoy, kailash}@us.ibm.com

Abstract
We demonstrate compact integrated arrays of BEOL-friendly novel access devices (AD) based on Cu-containing MIEC materials[1-3]. In addition to the high current densities and large ON/OFF ratios needed for Phase Change Memory (PCM), scaled-down ADs also exhibit larger voltage margin V_m, ultra-low leakage (<10pA), and much higher endurance (>10^8) at high current densities. Using CMP, all–good 5 × 10 AD arrays with $V_m > 1.1$V are demonstrated in a simplified CMOS-compatible diode-in–via (DIV) process.

Keywords: Access device, MIEC, PCM, NVM, MRAM, RRAM

Introduction
For PCM or any other nonvolatile memory (NVM) to be as cost-effective as NAND FLASH (≤ $4F^2$/3), 3D-stacking of large crosspoint arrays in the BEOL is essential[4-5]. MIEC materials offer the requisite high ON current densities, low OFF current, and <400° processing temperatures[1]. However, large arrays mandate a wide voltage margin (to avoid excessive leakage through both half- and un-selected devices), and the AD characteristics must not degrade during memory operation, even as PCM current densities steadily increase with scaling (Fig.1)[1,6].

MIEC device fabrication and characteristics
In the first of three prototype AD designs that have been fabricated (Fig.2(a)), our Cu-containing MIEC material and a non-ionizable, wide-area TEC (≡ BEC) are sputter-deposited into an e-beam-defined via. In the second (Fig.2(b)), the TEC is patterned with e-beam and ion-milling, which enables bipolar operation (in-set). For both wide-area- and confined-TEC ADs, a polysilicon resistor allows current measurement during high-speed pulsing. Fig.3 shows cycling of a PCM pore device through an overlying confined–TEC AD. The 33nm pore-cell PCM, not just near the TEC. Such device arrays, tested using the integrated FETs, repeatedly exhibit 100% yield (Fig.5), with tightly-distributed voltages corresponding to PCM programming at sub-45 nm technologies, as the number of displaced ions drops. Encouragingly, arrays of DIV ADs damaged by excessive cycling can be recovered with a simple thermal anneal (Fig.12(a)); initial results with single DIV ADs, partially degraded by high-currents of one polarity, show similar recovery upon brief exposure to high current in the opposite direction (Fig.12(b)).

Scaling, new materials and voltage margin
Voltage margin V_m must be high to enable large arrays of cross-point memory devices[1]. Fig. 13 reaffirms[1] that as MIEC-based ADs are scaled in TEC area (and thus in MIEC volume), the V_m of confined ADs increases markedly. DIV access devices fabricated with CMP show even higher voltage margins (1.1V), and extend a universal trend of V_m with TEC CD (Fig.13). This strong dependence, together with Conductive-AFM (C-AFM) observations on MIEC thin films that V_m is independent of thickness down to 20 nm, indicates that the AD scaling called for by Fig.1 will inherently improve V_m. New materials have also been explored with C-AFM to further improve the voltage margins (Fig.14).

Conclusions
We have demonstrated compact integrated arrays of BEOL-friendly novel access devices (AD) based on MIEC materials. Significant improvement in the endurance was achieved through reductions in film thicknesses and currents. Endurance was also shown to be CD-independent, leading to > 10^9 cycles of endurance for currents corresponding to PCM programming at sub-45 nm technology nodes. Using a simple 1-mask BEOL-compatible CMP process, all-good 5 × 10 AD arrays with $V_m > 1.1$V and ultra-low leakages were demonstrated. Sizeable further V_m improvements are anticipated from device scaling and new materials.

Acknowledgements
Expert analytical and processing support from D. Pearson, N. Arellano, E. Delenina, and L. Krupp is gratefully acknowledged.

References
Fig. 1 PCM requires large Access Device (AD) current densities, yet absolute RESET current will decrease with scaling.

Fig. 2 MIEC-based ADs with non-ionizable electrodes are fabricated on 4” wafers with a) wide-area TECs (> BEC), b) TECs patterned to enable bipolar operation (inset) with ion-milling, and c) on 8” wafers with integrated FETs using Chemical-Mechanical Polishing (CMP).

Fig. 3 Cycling of a 33nm pore-cell PCM, with SET, RESET, and read performed through an overlaying AD (80nm BEC), which showed no degradation despite the >10⁷ high-current pulses. The 200nm TEC allowed “good polarity” (positive-on-TEC) PCM operation[7].

Fig. 4 a) Top-down view of metal- and MIEC-vias for a 5x10 array (w/ dummy rows/columns), after CMP; (b) TEM cross-section of a Diode-In-Via (DIV) AD, with planarized MIEC material capped by the TEC.

Fig. 5 Measured i-v characteristics for a 5x10 array of DIV ADs, tested with integrated FETs, showing large voltage margin (V_{tm} ~ 1.1V) and tight distributions.

Fig. 6 Slow measurements, performed on single or multiple good devices, reveal that leakage currents in MIEC-based ADs near 0V are <10nA.

Fig. 7 Both a) wide-area TEC and b) DIV MIEC-based ADs can operate without degradation for many high-current pulses, but eventually a change from low- to high-leakage occurs. This change is abrupt in all but the thickest ADs.

Fig. 8 MIEC-based AD endurance depends on current, but is independent of BEC CD, despite the nearly 3-fold change in current density.

Fig. 9 ADs show better endurance as the thickness, and thus the volume from which Cu⁺ is accumulated during cycling (see Fig.11), becomes smaller.

Fig. 10 For both wide-area TEC and DIV ADs, endurance improves as pulse duration is reduced.

Fig. 11 Local stoichiometry from TEM/EELS of wide-area TEC, 80nm BEC ADs a) as-fabricated, and b) after 425,000 cycles at 325μA. Regions near the TEC (biased negative for cycling) have become markedly Cu-rich.

Fig. 12 Low-leakage i-v characteristics that have been degraded by endurance failure or high-current pulses can be recovered by either a) thermal annealing, or b) high-current pulses of the opposite polarity. This implies that local accumulations of Cu shown in Fig.11 can be successfully redistributed.

Fig. 13 Wide-area-TEC, confined-TEC, and DIV ADs exhibit a common trend: V_{tm} increases sharpy as TEC CD is scaled down.