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Improving accuracy by subpixel smoothing in the
finite-difference time domain
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Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous
dielectric materials, due to the inhererent discretization (pixelization). We show that accuracy can be sig-
nificantly improved by using a subpixel smoothing of the dielectric function, but only if the smoothing
scheme is properly designed. We develop such a scheme based on a simple criterion taken from perturbation
theory and compare it with other published FDTD smoothing methods. In addition to consistently achieving
the smallest errors, our scheme is the only one that attains quadratic convergence with resolution for arbi-
trarily sloped interfaces. Finally, we discuss additional difficulties that arise for sharp dielectric corners.
© 2006 Optical Society of America

OCIS codes: 000.4430, 230.3990, 240.6700.
A popular numerical tool for photonics is the finite-
difference time-domain (FDTD) method, which dis-
cretizes Maxwell’s equations on a grid in space and
time.1 Here, we address difficulties in representing a
discontinuous permittivity ��� on such a grid by pro-
posing an anisotropic subpixel � smoothing scheme
adapted from spectral methods.2–4 We show that our
method consistently achieves the smallest errors
compared with previous smoothing schemes for
FDTD.5–7 Unlike methods that require modified field-
update equations,8 our method uses the standard
center-difference expressions and is easy to imple-
ment (free code is available).

When � is represented by “pixels” on a grid (or
“voxels” in 3D), two difficulties arise. First, a uniform
grid makes it more difficult to model small features
or to optimize device performance by continuous
variation of geometric parameters. Second, the pixel-
ized � may be a poor representation of the dielectric
function: diagonal interfaces produce staircasing,
and even interfaces aligned with the grid may be
shifted by as much as a pixel. This increases the com-
putational errors and can even degrade the rate of
convergence with the grid resolution—as was pointed
out in Ref. 8, � interfaces actually reduce the order of
convergence from the nominal quadratic (error ��x2)
of standard FDTD to only linear (error ��x). We ad-
dress both of these difficulties.

The first difficulty is addressed by any smoothing
scheme: assign to each pixel some effective � based on
the materials and interfaces in/around the pixel. The
effective � can then vary continuously with
geometry.1 However, such smoothing perturbs the
problem being solved, changing the original discon-
tinuous geometry to a smoothed geometry. Thus,

smoothing may actually increase the error. To ensure
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that the error is reduced, and in fact to restore qua-
dratic convergence, we propose a smoothing with zero
first-order effect in Maxwell’s equations.

Consider an interface between two isotropic � ma-
terials crossing a pixel, with a unit-normal vector n
perpendicular to the interface (assumed to be locally
flat for small pixels, deferring the question of corners
until later). We assign to that pixel an inverse dielec-
tric tensor (justified below):

�̃−1 = P��−1� + �1 − P����−1, �1�

where P is the projection matrix Pij=ninj onto the
normal. The �¯� denotes an average over the voxel
s�x�s�y�s�z (in 3D) surrounding the grid point in
question, where s is a smoothing diameter in units of
the grid spacing (s=1 except where noted). More pre-
cisely, FDTD employs a Yee grid in which different
field components are computed at different
locations,1 and we find the averages (1) at each E
component’s grid points. This �̃ is then used to com-
pute E= �̃−1D. For example, to compute Ex at its Yee
grid point �i+0.5, j ,k�= ��i+0.5��x , j�y ,k�z�, only the
first row of the �̃−1 tensor for that point is needed.
When �̃−1 is not diagonal, we obtain Dy and Dz at the
Ex point by simply averaging the Dy and Dz compo-
nents from their four adjacent Yee points (similar to
Ref. 10). Note that Eq. (1) has the nice property of be-
ing Hermitian for real scalar � and equals �−1 for ho-
mogeneous pixels.

Equation (1) corresponds to discretizing a
smoothed version of Maxwell’s equations, where � or
its inverse has been anistropically convolved with a
boxlike smoothing kernel. It was proposed for use
with a plane-wave method,2–4 based on effective-

medium considerations, but we can also evaluate this
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and other schemes by a simple criterion from pertur-
bation theory. In particular, even before we discretize
the problem, smoothing � causes the solution to be
perturbed, and this perturbation can be analyzed via
methods recently developed for high-contrast
interfaces.11,12 To minimize this smoothing error, we
simply require that the error be zero to first order in
the smoothing diameter s as s→0. The remaining
smoothing errors will be quadratic in the resolution
(except in singular cases as discussed below). Near a
flat interface, the effect of a perturbation �� on com-
puted quantities such as eigenfrequencies11 or scat-
tered powers12 is proportional to ���E	�2−���−1��D��2,
where E	 and D� are the continuous surface-parallel
and -perpendicular components of E and D, respec-
tively. For the first-order change to be zero, �� must
be a tensor, such that ��	 and ���

−1 both integrate to
zero (e.g., are equal and opposite on the two sides of
the interface). A simple choice satisfying this condi-
tion is Eq. (1), which uses the mean ��� for the
surface-parallel E components and the harmonic
mean ��−1�−1 for the surface-perpendicular compo-
nent.

Previous smoothing schemes do not satisfy this cri-
terion and are therefore expected to have only linear
convergence in general, and they may even have
worse errors than unsmoothed FDTD. In particular,
we compare our scheme with three other smoothings.
The simplest is to use the scalar mean ��� for all
components,6 which is incorrect for the surface-
normal fields. Kaneda et al.5 proposed an anistropic
smoothing that leads to diagonal �̃−1 tensors. We also
consider the VP-EP scheme,7 which is exactly the di-
agonal part of Eq. (1) for s=1. Both Kaneda and
VP-EP are equivalent to Eq. (1) for flat interfaces ori-
ented along the grid �xyz� directions, but they do not
satisfy the perturbation criterion for diagonal inter-
faces. Yet another method10 was found to be numeri-
cally unstable for our test cases, which prevented us
from evaluating it; however, it is equivalent to Eq. (1)
only for flat x /y /z interfaces. Other schemes, not con-
sidered here, were developed for perfect
conductors1,13 or for non-Yee lattices in 2D.14

To evaluate the discretization error, we compute an
eigenfrequency � of a periodic (square or cubic, pe-
riod a) lattice of dielectric shapes with 12:1 � con-
trast, a photonic crystal.15 In particular, we compute
the smallest � for an arbitrarily chosen Bloch wave
vector k (not aligned with the grid), so that the wave-
length is comparable with the feature sizes. We per-
form a FDTD simulation with Bloch-periodic bound-
aries and a Gaussian pulse source, analyzing the
response with a filter-diagonalization method16 to ob-
tain the eigenfrequency �. This is compared with the
exact �0 from a plane-wave calculation4 at a very
high resolution, plotting the relative error ��
−�0� /�0 versus FDTD resolution. � is a good proxy
for other common computations, because both the
change in the frequency and the scattered power for a
small �� go as ���E�2 to lowest order.12

Since Kaneda, VP-EP, and our method are equiva-

lent for grid-parallel interfaces (and we obtain qua-
dratic convergence for all these methods), we focus
instead on a more complicated case: a square lattice
of elliptical air holes shown in the inset of Fig. 1 for
the TE polarization (E in the 2D plane). Our new
method (hollow squares) has the smallest errors by a
large margin, while the Kaneda and VP-EP methods
are actually worse than no smoothing. As mentioned
above, all methods except ours converge linearly,
whereas we expect our method to be asymptotically
quadratic. As a trick to make the quadratic conver-
gence of our method more apparent, we double the
smoothing diameter to s=2 (filled squares), at the ex-
pense of increasing the absolute error.

The TM polarization (E out of the plane) is not
shown, but it is less interesting: all the smoothing
methods are equivalent to the simple mean �, all de-
crease the error compared with no smoothing, and all
methods (including no smoothing) exhibit quadratic
convergence. Since E is everywhere continuous, TM
is the easy case for numerical computation (and per-
turbative methods11,12).

Fig. 1. TE eigenfrequency error versus resolution for a
square lattice of elliptical air holes in �=12 (inset).

Fig. 2. Eigenfrequency error versus resolution for a cubic

lattice of �=12 ellipsoids in air (inset).
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In 3D, we used a cubic lattice of �=12 ellipsoids
with an arbitrary orientation in air. The results in
Fig. 2 again show that the new method has the small-
est error and is again quadratic. Notice that the or-
dering of the other methods has changed, and in gen-
eral we observe them to yield erratic accuracy.

Finally, we consider a qualitatively different case,
in which none of the methods satisfy our zero-
perturbation criterion: the presence of a sharp corner
leads to a new field singularity. Figure 3 shows the
error for a square lattice of tilted air squares in �
=12 (inset). Because our new method at least handles
the flat edges properly, it still has a lower error than
other smoothing schemes, although suboptimal han-
dling of the corner limits the differences. Fits of these
data indicate that our method seems to be converging
as �x1.4, and in fact this can be predicted analytically.
Quite generally, any corner leads to a singularity
where E diverges as rp−1 for a radius r from the cor-
ner, with p given by a transcendental equation in the
corner angle and � values (here, p
0.702).17 This
leads to a perturbation in the frequency ����E�2rdr
��r2p
�r1.404, where �r is the size of the perturba-
tion (the pixel). Other smoothing schemes, in con-
trast, are limited by the linear error from the flat in-
terfaces.

In future work, we hope to extend our method to
properly handle corners (where previous work has

18,19

Fig. 3. Degraded accuracy due to field singularities at
sharp corners: TE eigenfrequency error versus resolution
for a square lattice of tilted-square air holes in �=12
(inset).
been limited to right-angle corners ), by using the
analytical knowledge of the singularity to design a
corner smoothing. Anisotropic � may be handled simi-
larly to how it was treated in Ref. 3.
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